Récapitulatif des résultats de l’ensemble du projet : 321

Herbiers et Projets de Recherche

Titre du projet :

*Atlas de la conservation des arbres soumis à l'exploitation en Afrique Centrale (Cameroun, Congo, République Centrafricaine)*

Pays porteur du projet : CONGO

Coordinateur du projet : KAMI Emile

Correspondant SEP : G. Achoundong

Montant total de la contribution SEP : 40 K€

Durée du projet : 3 ans

Institution de rattachement du coordinateur de projet : Herbier National du Congo

Annexes :


http://mappemonde.mgm.fr/num27/fig10/intro_geo10.html (article, animation)

http://www.cartographie.ird.fr (plaquette)
Proposal to conserve *Tieghemella* Pierre (*Sapotaceae*) against *Tieghemella* Berl. & De Toni (*Absidiaceae*)

Arnaud Mouly¹, Laurent Gautier², Joëlle Dupont³, Hervé Chevillotte⁴, Jean-Louis Guillaumet⁴ & Jacques Florence⁴

¹ UMR CNRS 6249 Chrono-environnement, UFR Sciences et Techniques, Université de Franche-Comté, 16 Route de Gray F-25030 Besançon cedex, France. arnaud.mouly@univfcomte.fr
² Conservatoire et Jardin botaniques de la Ville de Genève; Case Postale 60; CH-1292 Chambéry/GE; Switzerland.
³ UMR OSEB (Organisation, Systématique et Evolution de la Biodiversité), MNHN, Paris, France.
⁴ UMR OSEB (Organisation, Systématique et Evolution de la Biodiversité), Institut de Recherche pour le Développement, MNHN, Paris, France.

*Proposé pour la conservation de Tieghemella Pierre (*Sapotaceae*) contre Tieghemella Berl. & De Toni (*Absidiaceae*)*  

The genus *Tieghemella* Pierre (*Sapotaceae*) comprises two recognized species: *T. africana* Pierre and *T. heckelii* (A. Chev.) Pierre ex Heine. Both species, known in timber trade and forestry as makoré, douka, or baku, are commonly used as timber in Western and Central Africa. They are economically important for countries of these areas as shown by the Gabonese timber volume exportation statistics (La lettre de l’ATIBT 18: 41, 2003). The genus *Tieghemella* Pierre is currently used in floras, ecological studies or timber tree atlases, as well as by political authorities, forestry departments and timber exploitation companies. Moreover, both species of the genus *Tieghemella* Pierre are listed in the IUCN Red List of Threatened Species of 2009 with the endangered status (IUCN, 2009).

From a nomenclatural point of view, the genus *Tieghemella* Pierre was published originally in 1890 (Pierre, l.c.) to accommodate a single species, *T. africana*. However two years earlier the fungal genus name *Tieghemella* Berl. & De Toni had been published (Berlese & De Toni, l.c.).
Hence, the fungal name has priority according to the International Code of Botanical Nomenclature of Vienna (McNeill et al. in Regnum Veg. 146. 2006).

To build the case for its conservation, a review of the history of *Tieghemella* Pierre is in order. Following publication by Pierre, based only on its seeds, it was first mentioned as an uncertain genus by Engler (Nat. Pflanzenfam. Nachtr. 1: 279. 1897) and later ignored by him (Monogr. Afrik. Pflanzen-Fam. 8[Sapotaceae]: 1–88. 1904). Perrot (in Chevalier, Vég. Util. Afr. Trop. Franç. 1(2): 160. 1907) mistakenly treated its only species, *T. africana*, in the synonymy of *Mimusops djave* Laness. ex Engl. (l.c. 1897)[= *Baillonella toxisperma* Pierre], but while comparing the fruits of another species ("Moabi" or *M. pierreana* Engl.) to those of "Djave" (l.c., p. 172), he suggested that those of Moabi better resembled a plant he called "*Tieghemella heckelii* (Pierre), vulgairement *Makerou du Grand-Bassam*", presumably referring to a handwritten name on the label of a poor seed specimen from Ivory Coast in Pierre’s herbarium. Lacking diagnostic elements and collection number references, this name has to be considered a *nomen nudum*. That same year Chevalier himself validly published the name *Dumoria heckelii* A. Chev. (in Compt. Rend. Hebd. Séances Acad. Sci. 145:267. 1907b "Heckeli"), based on study of additional material from Côte d'Ivoire, Ghana, and Liberia, under his new genus *Dumoria* A. Chev., arguing that *Tieghemella* Pierre, based only on seed material, was too obscure to be used. Dubard (in Ann. Mus. Col. Marseille, sér. 3, 3: 40–41. 1915) reconsidered the two genera and concluded that they were most likely congeneric. Although being aware that *Tieghemella* Pierre should have priority (but unaware of *Tieghemella* Berl. & De Toni) he decided to keep *Dumoria* because of its much clearer description and published the new combination *D. africana* (Pierre) Dubard for the Gabonese species. Later, however, both species of *Dumoria* were treated in *Mimusops* by Hutchinson & Dalziel (Fl. W. Trop. Afr. 2: 14. 1931), a position followed by several other authors during the next 30 years.

Based on material that had accumulated in the intervening decades, including flowering material of the Gabonese species, Aubréville (in Notul. Syst. (Paris) 16: 235. 1960) first demonstrated unambiguously that the two species were congeneric. Unfortunately, he was also unaware of the precedence of *Tieghemella* Berl. & De Toni and discarded the name *Dumoria* in favour of *Tieghemella* Pierre. However, Aubréville never made formally the combination *T. heckelii*, which was inadvertently but validly published three years later by Heine (in Hepper, Fl. W. Trop. Afr., ed. 2, 2: 21. 1963).

The illegitimacy of the name *Tieghemella* Pierre, pointed out in the Index Nominum Genericorum (http://botany.si.edu/ing/), could easily be overcome, as the legitimate name *Dumoria* can be adopted without need of any new species combination [*D. africana* having being
published by Dubard in 1915 (l.c.: 41)]. However, the name *Tieghemella* Pierre is firmly established in both taxonomical and politico-commercial literature, in comparison to *Dumoria*. Since Aubréville (l.c. 1960) convincingly distinguished the two species from *Mimusops*, placing them in *Tieghemella*, the later genus has been widely accepted in taxonomic works. The only departure from this was by Baehni (in Boissiera 11: 121. 1965), who combined the considered species under *Baillonella* in his system of Sapotaceae. The name *Dumoria* has not been accepted since Aubréville’s treatment, while *Tieghemella* predominates in monographs, in regional floristic publications, and in ecological, forestry and phylogenetic works (as in 29 references noted, including Aubréville, Fl. Gabon 1: 45. 1961, Fl. Cameroun 2: 42. 1964; Heine, l.c.; Keay & al., Nigerian Trees 2: 35. 1964, ed. 2: 392. 1989; Kunkel, Trees Liberia: 196. 1965; Gautier in Lebrun & Stork, Énum. Pl. Fleurs Afr. Trop. 4: 148. 1997; Burkill, Useful Pl. W. Trop. Afr. 5: 60–61. 2000; Govaerts & al., World Checkl. Bibliogr. Sapot.: 323–324. 2001; and PROTA [Fr. version] 7(1): 624. 2008). This is further evidenced by a Google search conducted on 2 August 2010, which gives a very neat advantage to “*Tieghemella + timber*” (more than 5800 results) compared to “*Dumoria + timber*” (235 results).

In turn, the fungal name *Tieghemella* Berl. & De Toni, which has priority over *Tieghemella* Pierre, is now placed under synonymy of *Absidia* Tiegh., as the type (*T. repens* (Tiegh.) Berl. & De Toni) is currently recognized as an *Absidia* species (*A. repens* Tiegh.) according to the Index Fungorum (http://www.indexfungorum.org/). Among the other fungal species previously placed under *Tieghemella* Berl. & De Toni, most are now considered *Absidia* species as well, and a few are placed under *Gongronella* Ribaldi, *Lichteimia* Vuill. and *Rhizomucor* Lucet & Constantin. A recent revision (Hoffmann & al. in Mycol. Res. 111: 1169–1183. 2007) using molecular, morphological and physiological data confirmed the placement in *Absidia* of several species previously placed under *Tieghemella* Berl. & De Toni, including the type species *T. repens*. Two poorly known species without any recorded economic interest still await transfer from *Tieghemella* Berl. & De Toni to another genus.

Although acknowledging the illegitimacy of *Tieghemella* Pierre, Pennington (Gen. Sapotaceae: 125–126. 1991) continued to accept this genus in his monograph of Sapotaceae genera, labelling it as a "nom. cons. prop.", but such a proposal has never been prepared. Given this precedent, and the historical pattern of usage of both generic names in different parts of West Africa, we consequently assume that a change from *Tieghemella* Pierre to *Dumoria* A. Chev. would not be implemented by most political and forestry authorities, perpetuating the confusion in the future and increasing the nomenclatural discrepancy between those in the scientific community and politico-commercial authorities. We therefore now finally propose the
conservation of *Tieghemella* Pierre.

Acknowledgments

The research was supported by the French “Institut de Recherche pour le Développement” and the “Muséum National d’Histoire Naturelle” in Paris, in the context of a research and valorisation project for the publication of an “Atlas des essences commercialisées d’Afrique tropicale humide”. We are grateful to Joost A. Stalpers, CBS Fungal Biodiversity Centre, Netherlands, for sharing expertise on fungal *Absidia* group nomenclature and to the two reviewers for improvement of the manuscript.
Atlas des essences commercialisées d’Afrique tropicale humide : l’exemple du Cameroun

Jean-Louis Guillaumet¹, Hervé Chevillotte⁴, Charles Doumenge², Catherine Valton¹, Nicolas Fauvet², Gaston Achoundong³.

Résumé : La conservation de la biodiversité, la généralisation des pratiques d’exploitation durable des forêts, la lutte contre les trafics en tous genres et l’exploitation illégale, requièrent une connaissance améliorée de la ressource.

L’atlas de distribution des essences commercialisées d'Afrique tropicale humide a pour ambition de synthétiser les données collectées à partir d’échantillons d’herbiers, de relevés botaniques et d’inventaires forestiers, permettant pour la première fois de rassembler et croiser des informations dispersées. Chaque type de données présente des spécificités prises en compte dans ce travail. Les 74 essences reconnues par les forestiers correspondent à 125 espèces botaniques réparties en 18 familles. L’élaboration du référentiel taxonomique met en évidence la nécessité de procéder à des révisions taxonomiques. Les stations de récolte, relevés et inventaires sont strictement géoréférencés et intégrés dans un système d'information géographique afin d'étudier la distribution spatiale en relation avec les types de végétation et certaines données climatiques. Cet atlas sera valorisé dans le cadre de stratégies de protection des espèces et d’exploitation durable des ressources en bois.

¹ IRD, 32 av. Henri Varagnat 93143 Bondy cedex, France ; valton@bondy.ird.fr
² CIRAD, Campus International de Baillarguet TA-C36/D, F-34398 Montpellier cedex 5, France ; charles.doumenge@cirad.fr, nicolas.fauvet@cirad.fr
³ Herbier National du Cameroun, BP 1601, Yaoundé, Cameroun ; gachoundong@yahoo.fr
⁴ MNHN, Herbier National, 16 rue Buffon, 75005 Paris, France ; jlguiome@mnhn.fr, Herve.Chevillotte@ird.fr
La première phase du projet, restreinte aux essences camerounaises, servira de base conceptuelle et méthodologique pour la suite du projet, qui sera étendu à toute l’Afrique tropicale humide, avec un partenariat institutionnel élargi.

**Mots clés** : Afrique tropicale humide, Cameroun, collections, essences forestières, inventaires forestiers, SIG.

### 1. Introduction

La demande en bois d'œuvre tropicaux, appuyée sur une filière organisée qui va de l'exploitation des arbres à leurs utilisations, a fait s'exprimer, depuis plusieurs d'années, la volonté déclarée d'améliorer la connaissance de la ressource et de développer des politiques d'exploitation durable. Pour ce faire, il est nécessaire de mettre à la disposition des parties prenantes – scientifiques, décideurs, exploitants forestiers – des informations scientifiquement vérifiées. Or, les connaissances sur les arbres exploités pour leur bois sont nombreuses, mais dispersées et de diverse nature. Elles ont été accumulées depuis plusieurs décennies par les botanistes, écologistes et forestiers sans qu'il n'y ait eu, trop souvent, d'échanges.

Le projet de rassembler et d'utiliser ces données répond à une recommandation formulée lors du séminaire relatif à "La gestion des forêts denses africaines aujourd'hui", organisé par le projet FORAFRI à Libreville, Gabon, du 12 au 16 octobre 1998 (projet conjointement exécuté par le CIRAD-Forêt et le CIFOR ; Nasi *et al.*, 1999). Il s'appuie sur le projet RIHA (Réseau d'Informatisation des Herbiers Africains), élaboré en partenariat entre BIODIVAL (Biodiversité et Valorisation), Unité de Service de l'IRD (Institut de Recherches pour le Développement), et divers herbiers africains (YA, HEFG, TOGO, IFAN, DAKAR ; Chevillotte & Florence, 2004).
De nombreuses données originales ont aussi été collectées par le CIRAD-Forêt (Centre de Coopération Internationale en Recherche Agronomique pour le Développement) au cours de vastes campagnes d’inventaires forestiers, en partenariat avec les administrations et les exploitants forestiers. Seule une faible partie de ces données est informatisée à l’heure actuelle. Ce projet permettra de les valoriser tant sur le plan scientifique que social via la mise en place de bases de connaissances pour la gestion durable des ressources forestières.

D’un autre côté, l’UICN (Union Mondiale pour la Nature) produit une liste des espèces menacées (IUCN, 2006) qui sert de référence à leur inscription aux annexes de la CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora). L’attribution d’un statut de conservation est effectuée sur la base d’avis d’experts et de documents bibliographiques souvent très parcellaires mais que le présent projet permettra de compléter. Dans sa démarche, ce projet s’inspire de "Endemic tree species of the Western Ghats (India)" réalisé par l’Institut Français de Pondichéry (Ramesh et al., 1997) et disponible sous forme imprimée et informatisée.

Les résultats que l’on peut espérer sont de deux ordres :

- scientifiques : avec, notamment, la mise au point taxonomique des taxons considérés, l’étude comparée des aires de répartition d’espèces arborescentes en relation avec l’environnement biophysique et l’impact humain, une contribution à la théorie des refuges forestiers et à une meilleure compréhension de la répartition de la biodiversité, l’évaluation des aires potentielles de répartition, leurs modifications récentes et les impacts du changement climatique ;

- de développement : portant, par exemple, sur l’amélioration et la diffusion des connaissances de ces espèces en fournissant des recommandations pour des stratégies de conservation (réseaux d’aires protégées, listes rouges UICN) et d’exploitation durable (paramètres d’exploitation, séries de conservation dans les unités forestières d’aménagement - UFA).
2. Méthodologie

2.1. L’espace géographique


2.2. La liste des espèces retenues

La base de départ est la liste des essences commercialisables sous leurs noms pilotes proposés par l’« Association Technique Internationale des Bois Tropicaux » (ATIBT, 1986) et complétée par les noms scientifiques et leur appartenance familiale.

Le nom pilote, nom proposé aux usagers de la filière bois pour une essence et généralement tiré d'une appellation locale, ne correspond pas automatiquement à un nom scientifique. Mais il désigne, dans quelques cas, une « essence », notion qui recouvre les caractéristiques pratiques du bois, alors que le nom scientifique s'applique à une espèce au sens botanique définie sur des critères différents. Les deux notions doivent être distinguées même si, dans de nombreux cas, la correspondance est stricte.
2.3. Le référentiel taxonomique


<table>
<thead>
<tr>
<th>Essence ou nom pilote</th>
<th>Espèces</th>
<th>Nombre de cas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>
Tableau 1 : Correspondance entre le nom pilote ou d’essence et le nom scientifique

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Ce travail, rendu délicat par la méconnaissance botanique des forestiers et la méconnaissance des bois de la part des botanistes, est amélioré au fur et à mesure de l’avancement du projet. Il a été convenu de retenir, dans un premier temps au moins, après avis des exploitants et industriels par l’intermédiaire de l’ATIBT, une liste d’essences prioritaires. Dans le cas du Cameroun, cette liste non définitive inclue 68 essences qui correspondent à 89 espèces botaniques réparties en 18 familles.

2.4. Les sources de données disponibles

A l’examen, les données disponibles sont de différentes origines :

- spécmens d’herbiers,
- relevés floristiques ou de végétation,
- inventaires forestiers,
- autres sources.

La palette de données inclue des données de présence-absence, des données semi-quantifiées issues d’inventaires phytosociologiques, des données concernant la densité, la surface terrière et les structures diamétriques avec, sur certains sites, la possibilité de comparer des données multi-temporelles. Ces données ont été relevées selon des méthodes très diverses et sur des surfaces non
moins diverses, de manière plus ou moins systématique (le long de voies de pénétration, sur
l’ensemble d’un territoire, avec un dispositif d’échantillonnage plus ou moins dense).

2.4.1. Herbiers

Les herbiers représentent un potentiel d'informations de première valeur. Outre la référence à
l'objet, sur lequel on peut toujours revenir, les étiquettes annexées fournissent des informations
variées sur la phénologie, l'écologie, l'habitat et les changements de la couverture végétale. La
localisation géographique des récoltes peut toutefois s’avérer problématique, surtout sur les
echantillons anciens.

2.4.2. Relevés floristiques

Il s'agit des listes de plantes établies par des botanistes, ou chercheurs d'autres disciplines, pour
décrire une formation végétale. Ces relevés sont en général situés géographiquement. Ils peuvent
être publiés ou non, c'est le cas des mémoires et thèses notamment, rendant nécessaires des
recherches bibliographiques classiques mais aussi dans la « littérature grise » plus dispersée et
difficile d’accès. L’exactitude de l’identification botanique ne repose que sur l’auteur du relevé.
Or sans remettre en cause les connaissances de celui-ci, beaucoup de raisons justifient les
identifications douteuses ou erronées. Les révisions taxonomiques peuvent remettre en cause les
identifications, la « redécouverte » d’une espèce méconnue comme c’est le cas d’*Alstonia boonei*
et *Alstonia congensis*, les aires communes sont des exemples de ces confusions.

2.4.3. Inventaires forestiers.
Il s'agit d'une source considérable d'informations car ces inventaires couvrent généralement de vastes superficies avec des dispositifs d'échantillonnage homogènes. Outre la présence de l’espèce, les inventaires forestiers contiennent des informations sur l'importance - nombre d'individus et la structure diamétrique des populations, éléments qui permettent d'évaluer la ressource disponible, la finalité de ces inventaires. Il existe différents types d'inventaires en fonction de leurs objectifs, des essences prises en compte, de leurs auteurs et de leur ancienneté. Il est important de signaler que les inventaires forestiers ne sont pas des stations de collecte comme les échantillons botaniques mais sont effectués sur des surfaces auxquelles doivent être rapportées toutes les données recueillies. En outre, seuls les arbres dont le diamètre est égal ou supérieur à certaines dimensions, 40 cm en général - diamètre moyen d’exploitation fixé par la législation ou limite à partir de laquelle une essence est considérée rentable -, sont pris en compte. Le fait de ne pas apparaître dans un inventaire ne signifie donc pas que l’essence considérée n’existe pas dans la zone prospectée. Cette absence peut être due à une surexploitation, cas le plus fréquent. Des relevés de type botanique où tous les individus de toutes les classes d’âge et de diamètres sont notés permettront, seuls, d’avoir une répartition exacte de l’espèce considérée.

2.4.4. Autres sources potentielles

Diverses autres sources sont susceptibles d’être utilisables: cartes de distribution, carnets de terrain, xylothèques, carpothèques, anthothèques. à rechercher dans la littérature spécialisée et les fonds documentaires. A l’usage, ces sources semblent ne pas apporter de données importantes. Notons que malgré l’intérêt qu’elles présentent les cartes de répartition souvent publiées ne sont pas d’un grand apport dans le cadre de notre recherche. En effet, de telles cartes sont établies à
partir de généralisation d’observations préalables: une espèce est connue comme appartenant à une formation végétale, son aire de distribution correspond donc à l’extension de celle-ci.

L’objectif de cet Atlas est justement d’élimer ces déductions en se basant sur des données exactes.

2.4.5. Intégration et harmonisation

Ces différents types de données sont en cours d’intégration dans le modèle conceptuel de données de la base RIHA qui, pour le moment, permet de gérer et d’exploiter les données issues des herbiers et de la bibliographie.

Ces informations n'ont pas toutes la même valeur. Les plus sûres, qui font autorité en matière de botanique, sont issues des collections d'herbier: les identifications y sont rigoureuses et en accord avec les travaux les plus récents et, si ce n'est pas le cas, il est toujours possible de remédier à cette carence puisque le matériel est disponible. La précision des informations tirées des relevés, publiés ou non, est liée à la connaissance botanique de l'époque. On pourra, tout au plus, actualiser la nomenclature. Enfin, les inventaires forestiers sont établis sur des noms d'usages, issus pour la plupart de noms locaux. Le tableau 2 résume les informations fournies par chacune des sources de données et leur valeur. En conclusion les données issues des herbiers sont scientifiquement sûres et vérifiables mais peu nombreuses pour de grands arbres, abondants et à large répartition géographique. Les autres sources fournissent de nombreuses, voire très nombreuses données, mais qui doivent faire l’objet d’une critique constante.

<table>
<thead>
<tr>
<th>sources</th>
<th>noms</th>
<th>localités</th>
<th>Coordonnées géographiques</th>
<th>Nombre d'individus</th>
<th>Classes de diamètres</th>
<th>Ecologie</th>
<th>Phénologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>herbiers scientifiques</td>
<td>+</td>
<td>+</td>
<td>N</td>
<td>N</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>relevés floristiques scientifiques</td>
<td>+</td>
<td>N</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>N</td>
</tr>
</tbody>
</table>
3. L'exemple du Cameroun


3.1 Origine et traitements des données


L’étude de la distribution spatiale des spécimens collectés passe par une recherche des coordonnées géographiques de la localité ou de la station de collecte à partir des informations de

<table>
<thead>
<tr>
<th>inventaires</th>
<th>pilotes</th>
<th>+</th>
<th>±</th>
<th>+</th>
<th>+</th>
<th>±</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>forestiers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>autres</td>
<td>scientifiques</td>
<td>+</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>±</td>
<td>N</td>
</tr>
</tbody>
</table>

Tableau 2 : Sources et types de données (+ : toujours mentionnées ; ± : mentionnées ou non ; N : non mentionnées)
lieux plus ou moins précises fournies par le botaniste. En l’absence d’une précision sur la localisation de la station de collecte elle-même, les coordonnées retenues sont celles du gazetier du Cameroun, téléchargé à partir du site de GEOnet Names Server (GNS) et mis à jour dans la base RIHA. Dans le cas contraire, les coordonnées géographiques sont calculées à partir des cartes IGN au 1/200.000 de l’Afrique francophone datant des années 1960-65.

Les relevés floristiques contenus dans l’étude phytogéographique de Letouzey (1968b) ont en outre permis de sélectionner un total de 480 points géoréférencés comprenant chacun un nom de taxon, une description écologique et le nombre d’individus. On notera que la zone géographique couverte par les relevés floristiques se situe essentiellement à l’est de Yaoundé.

La troisième source de données utilisée relève des inventaires forestiers. Certains inventaires anciens sont disponibles auprès du CIRAD ; d’autres le sont auprès des services compétents de l’administration camerounaise (Ministère de l’Environnement) ou d’entreprises privées (inventaires d’aménagement et d’exploitation). L’accès à ce matériel est parfois délicat car considéré comme sensible par les exploitants ou l’administration :


Les données d’inventaires récentes des unités forestières d’aménagement (UFA) constituent une autre source d’information potentielle non encore exploitée qui représente environ une surface de 8 millions d’hectares de la forêt dense humide.

Au total, ces jeux de données fournissent trois types d’informations :
- les présences-absences des espèces sur tout l’ensemble du territoire ;
- les effectifs à l’hectare pour les arbres dont le diamètre du tronc dépassait 40 cm sur toute
  la zone forestière au Sud d’une ligne Kribi – Sangmélima – Yokadouma à partir des
  inventaires anciens Sud Cameroun ;
- les effectifs à l’hectare pour les arbres dont le diamètre du tronc dépassait 40 cm sur toute
  la zone forestière à partir des inventaires récents MINFOF-FAO.

Les informations en présences-absences sont représentées sous forme de points. Celles relatives
aux effectifs ont été réalisées avec le logiciel d’interpolation TIN disponible sous un
environnement MapInfo. Le dispositif d’échantillonnage de l’inventaire MINFOF-FAO étant
beaucoup plus espacé que celui des inventaires du Sud Cameroun, les représentations graphiques
sont moins précises (cf. plus loin, l’exemple de *Lophira alata*).

### 3.2 Réalisation du SIG

Le SIG sur le Cameroun (Schubert, 2005) comprend actuellement plusieurs couches :

- routes, villes, hydrographie,
- limites et noms des pays,
- relief,
- végétation simplifiée,
- précipitations annuelles moyennes (période de 1951 à 1989),

dont les quatre premières ont été étendues à l’Afrique Centrale.

### 3.4 Cartes de distribution et de répartition
Les différents types de données ont permis de réaliser les premières cartes de distribution (présence-absence) et de répartition (interpolation des données) des espèces *Lophira alata* (azobé), *Entandrophragma cylindricum* (sapelli), et *Baillonella toxisperma* (moabi), choisies pour leur importance dans le commerce des bois et leur position taxonomique non sujette à caution. *Baillonella toxisperma* est endémique d’Afrique centrale, alors que les deux autres espèces sont présentes dans tout le massif forestier.

Le tableau 3 donne le nombre de données par origine de ces trois espèces : les stations dans le cas des échantillons d’herbier, le centre des surfaces prises en compte dans les relevés et inventaires:

<table>
<thead>
<tr>
<th>Espèces</th>
<th>Herbiers (YA et P)</th>
<th>Relevés</th>
<th>Inventaires</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Lophira alata</em></td>
<td>26</td>
<td>-</td>
<td>121</td>
</tr>
<tr>
<td><em>Baillonella toxisperma</em></td>
<td>10</td>
<td>6</td>
<td>104</td>
</tr>
<tr>
<td><em>Entandrophragma cylindricum</em></td>
<td>6</td>
<td>17</td>
<td>275</td>
</tr>
</tbody>
</table>

Tableau 3. Nombres de données par sources et par espèces

Pour les espèces du tableau 3, les spécimens des herbiers de Yaoundé (YA) et de Paris (P) correspondent, pour la plupart, aux premières collectes des botanistes (Fleury, Hédin, Chevalier, Zenker) et sont pour l’essentiel concentrés sur le littoral. Le nombre de points représenté sur les cartes de distribution reste assez faible à cause du manque de précision sur la localisation de la collecte par les botanistes du début du siècle dernier. Les relevés ont été effectués par Letouzey et couvrent la région du Dja, et l’Est. Les inventaires, quant à eux, permettent de compléter efficacement les distributions de ces espèces grâce à un carroyage plus ou moins serré suivant les périodes et les zones géographiques.

3.4.1 *Lophira alata* Banks ex C.F. Gaertn.
L’ensemble des points de collectes des spécimens d’herbiers de l’azobé (*Ochnaceae*) conservés à Paris et/ou à Yaoundé se concentre tous dans la région littorale. Une seule récolte de Meijer en 1981, signale la présence de l’azobé dans la région de Yokadouma (Est du Cameroun). Les relevés floristiques effectués par R. Letouzey à l’Est du Dja n’en font pas mention. Il faudra attendre l’apport des inventaires forestiers du CTFT/Cirad pour marquer sa présence incontestable dans l’extrême Sud-Est. La distribution des différentes données (récoltes et inventaires) montre que cette espèce est concentrée principalement dans la forêt biafréenne ou forêt littorale, elle est également assez fortement présente dans la région de Bertoua et tout particulièrement dans la zone Sud-Est du Cameroun (figure 1).

![Figure 1: Distribution ou présence-absence de *Lophira alata* au Cameroun](image)

Si l’on prend maintenant en compte les données quantifiées issues de l’inventaire forestier de 2003-2004, la carte (figure 2) qui en résulte permet de confirmer aujourd’hui une aire de répartition principale autour du golfe de Guinée mais aussi une présence notable de cette espèce dans l’Est. La dernière carte (figure 3), avec des données d’inventaires de 1983-84, est plus précise que la précédente grâce à un maillage plus fin et montre bien une zone de forte abondance dans l’Ouest (région de Kribi et d’Ebolowa) – jusqu’à plus de deux arbres/ha – mais aussi dans
l’extrême Sud-Est, le long des grandes vallées. Malgré tout, en comparant ces deux cartes, la densité des effectifs au Sud de Kribi et au Sud-Ouest d’Ebolowa apparaît très différente entre les deux périodes d’inventaires du fait sans doute de l’intensité de l’exploitation forestière qui prélève en priorité les individus de diamètre supérieur ou égal à 40 cm.

Figure 2 : Répartition des effectifs de *Lophira alata* au Cameroun (dbh ≥ 40 cm) - Source : inventaire MINOF et FAO, 2003-2004
Les données quantifiées issues des inventaires forestiers nous permettent ainsi de mieux visualiser l’aire de répartition de l’azobé qu’avec uniquement les données de présences. Elles ont de plus l’avantage de mettre en évidence une hétérogénéité du peuplement d’azobé sur son aire de répartition. Les plus fortes densités se trouvent localisées sous le climat très humide (plus de 1.800 mm de précipitations annuelles) de l’Ouest, ou alors dans les grandes vallées alluviales de l’Est. Elle peut d’ailleurs remonter ainsi vers le Nord le long des vallées jusque dans la zone de contact forêt-savane. Il faut enfin noter que ces deux régions d’abondance de l’azobé, essence héliophile dont on peut parfois noter la régénération à la périphérie des zones dénudées, sont situées dans des zones de peuplement humain ancien, et donc soumis à des défrichements passés qui ont pu en favoriser son développement (Letouzey, 1968b).

3.4.2 *Baillonella toxisperma* Pierre
La figure 4 montre une distribution du moabi (*Sapotaceae*) depuis le pourtour du golfe de Guinée jusque vers l’intérieur, à l’exception des forêts à l’Est. Les récoltes se concentrent sur le littoral et au Sud-Ouest de Batouri, les relevés sont dans la région du Dja et de Batouri. Les données d’inventaires, plus nombreuses, complètent la distribution du moabi au Sud du pays et au Sud de Bertoua.

Figure 4 : Distribution ou présence-absence de *Baillonella toxisperma* au Cameroun

Toutefois, les inventaires forestiers du Sud-Cameroun montrent que cette espèce était plus particulièrement abondante au début des années 80 dans une zone centrale située entre les longitudes de Yaoundé et de Ngoïla (figure 5). Elle est nettement moins abondante à l’Ouest, vers la côte, et rapidement absente vers l’Est / Nord-Est du bloc forestier. Plusieurs explications peuvent être avancées, comme la préférence pour des climats ni trop humides ni trop secs à régime équatorial (quatre saisons moins contrastées que sous climat tropical) et le fait que cette espèce a pu aussi être exploitée anciennement et de manière plus intense dans la zone littorale. Cela permet en tout état de cause d’affiner notre connaissance de l’aire de répartition du moabi et pose certaines questions auxquelles il faudra tenter de répondre à l’avenir (histoire de l’exploitation forestière, comparaisons d’inventaires anciens et récents).
Figure 5 : Répartition des effectifs de *Baillonella toxisperma* au Sud-Cameroun avec un dbh ≥ 40 cm – Source : inventaires CTFT, 1983-1984

3.4.3 *Entandrophragma cylindricum* (Sprague) Sprague

La figure 6 montre une distribution du sapelli (*Meliaceae*) essentiellement concentrée au Sud et à l’Est avec quelques points près du mont Cameroun. La contribution des récoltes est ici très faible, seuls les relevés et principalement les données d’inventaires permettent de définir plus précisément la distribution.
Figure 6 : Distribution ou présence-absence de *Entandrophragma cylindricum* au Cameroun

La figure 7 présente la répartition des effectifs du sapelli dans tout le Sud-Cameroun : la densité maximale est de près de trois arbres/ha dont le diamètre est supérieur ou égal à 40 cm. Cette carte montre bien que, depuis l’Est où elle est très abondante, ses effectifs diminuent vers l’Ouest jusqu’à une totale absence en zone littorale. Comme dans le cas du moabi, il est possible qu’une exploitation plus ancienne et intense ait quasiment éliminé cette espèce entre la côte et la longitude d’Ebolowa mais le net gradient décroissant, à une époque – au début des années 1980 – où l’exploitation forestière n’avait pas encore atteint le Sud du Dja et certaines zones de l’Est, milite plutôt en faveur d’un phénomène naturel. Cette espèce, même si elle est présente sporadiquement dans de nombreuses forêts, est caractéristique des forêts semi-décidues, sous climat moins humide que celles de l’Ouest, et de forêts qui en outre ont connu des phases de rétraction et de recolonisation dues aux variations climatiques et exacerbées par les défrichements humains.
4. Conclusions

Avec le Cameroun la synthèse des données disponibles sur les espèces forestières commercialisées a permis :

- le recueil de données de différentes qualités et origines,
- le développement d’une méthodologie originale permettant le croisement de ces données,
- la constitution d’un référentiel taxonomique,
- la mise en évidence de relations entre les aires de répartition et certains facteurs biophysiques qui restent à approfondir (causes écologiques, climatiques, anthropiques), mais aussi des insuffisances de données terrain,
- la création de base de données, SIG et site web en cours de finalisation.

Une extension du projet à l’Afrique tropicale humide et à de nouvelles collaborations (institutions, ONG, secteur privé) constituera la prochaine étape.

Figure 7 : Répartition des effectifs de *Entandrophragma cylindricum* au Sud-Cameroun avec un dbh ≥ 40 cm – source : inventaires CTFT, 1983-1984
5. Bibliographie


Dupuy, B. & R., Nasi (eds.) - 1999 - Gestion des écosystèmes forestiers denses d'Afrique tropicale humide. Références bibliographiques: Cameroun, Centrafricaine, Congo, Côte d'Ivoire et Gabon. in Doumenge, Ch, Gami, N. & Louppe, D. La gestion durable des forêts denses en Afrique centrale et occidentale. FORAFRI, ICIFOR, MAE, Cirad, Montpellier, France (cédérom).


Letouzey R. (1985). Carte phytogéographique du Cameroun au 1 : 500 000 et notice. IRA,
Yaoundé, Cameroun & Institut de la Carte Internationale de la Végétation, Toulouse, France.


Mayaux, P., Janodet, E., Blair-Myers & Legeay-Janvier, P. – 1997 – Carte de végétation de l’Afrique Centrale à 1: 5 000 000 et Notice explicative. TRES, Joint Research Centre, ISPRA, Italy.


Remerciements

Nous remercions le MINOF pour nous avoir communiqué les données provenant du récent inventaire forestier national, ainsi que le personnel de l’Herbier National du Cameroun qui a participé activement à l’informatisation des collections.
De l’herbier à la carte :
représentation cartographique des collections et des données botaniques

par Jean-Louis Guillaumet, Hervé Chevillotte
IRD, s/c MNHN, Herbier national, 16 rue Buffon, F-75005 Paris, France
jlguillau@gmail.com
herve.chevillotte@ird.fr

Charles Doumenge, Nicolas Fauvet
CIRAD, Campus international de Baillarguet TA-C105/D, F-34398 Montpellier cedex 5, France
charles.doumenge@cirad.fr
nicolas.fauvet@cirad.fr

Catherine Valton
IRD France-Nord, 32 avenue Henri Varagnat, F-93143 Bondy cedex, France
catherine.valton@ird.fr

Jean-Michel Onana
Herbier national du Cameroun, BP 1601, Yaoundé, Cameroun
jmonana2002@yahoo.fr

Résumé
La représentation cartographique des collections et des données botaniques, en Afrique tropicale humide, a commencé à se développer au XXᵉ siècle avec les travaux en phytogéographie du Jardin botanique national de Belgique, de R. Letouzey, J. Vivien et J.-J. Faure au Cameroun et de J.B. Hall et M.D. Swaine au Ghana, dans les années 70 et 80. Le projet de réalisation d’un « atlas de répartition des arbres commercialisés d’Afrique tropicale humide » est né de la prise de conscience de la dégradation accélérée des forêts tropicales humides et de la nécessité de mettre en place des politiques d’exploitation durable à partir du milieu des années 90. L’originalité de l’approche présentée ici réside dans un processus de recherche, de contrôle et de standardisation des données d’origine et de nature différentes dans le but de réaliser des cartes de répartition, à différentes échelles, d’espèces botaniques d’Afrique tropicale humide exploitées pour leur bois. Quelques résultats sont exposés à partir de la méthodologie et des outils géomatiques (http://phyto-afri.ird.fr) appliqués aux données botaniques disponibles pour le Cameroun.

1 Introduction
Au cours des temps, l’étude des plantes a d’abord été motivée par leurs propriétés utiles à l’Homme, en particulier alimentaires et médicinales. À cette fin, il fallait aussi pouvoir les identifier, et donc
les décrire. La nécessité de connaître la provenance des espèces, de préciser leur aire de répartition\(^2\) en fonction du milieu physique, d’en déceler les causes, n’est apparue que relativement tard, à partir de la fin du xviii\(^e\) siècle. Et ce n’est qu’au xx\(^e\) siècle que cet intérêt pour les cartes et la biogéographie s’est réellement développé (Stork et Lebrun, 1988).


Il y avait donc, d’une part, une demande exprimée par les forestiers et, d’autre part, des projets de capitalisation des informations contenues dans les herbiers auxquelles venaient s’ajouter les possibilités d’utiliser les inventaires forestiers, inventaires réalisés sur de très vastes superficies.

L’originalité de l’approche présentée ici réside dans un processus de recherche, de contrôle et de standardisation des données d’origine et de nature différentes. En premier lieu, il a fallu valider les données liées aux noms scientifiques, puis localiser précisément les lieux de récolte ou d’observations en vue de leur intégration dans une base de données et un Système d’information géographique (SIG). La méthode détaillée ci-après est utilisée pour l’établissement de cartes de répartition des essences commercialisées du Cameroun et en cours d’extension à l’ensemble de l’espace tropical humide africain.

2 Les cartes de répartition des végétaux

La connaissance de la répartition des végétaux constitue l’un des fondements de toute phytogéographie raisonnée et permet de bâtir des hypothèses scientifiques solides (Letouzey, 1978 ; Lebrun, 2001). Les cartes de répartition peuvent être établies à tous les niveaux taxonomiques, familial, générique, spécifique et autres rangs intermédiaires.

Ces cartes se présentent sous de nombreuses modalités (Lebrun et Stork, 1977, 1981 ; Stork et Lebrun, 1988), réductibles à deux catégories essentielles en fonction de la nature des données utilisées :

- les cartes par généralisation, basées sur des observations de terrain, ponctuelles ou provenant de relevés et d’inventaires divers. La répartition ou l’aire d’occupation (UICN, 2001) est alors représentée par des aires générales d’occupation (fig. 1b), plus ou moins extrapolées en se référant très souvent aux

\(^2\) Quelques précisions de vocabulaire : il ne faut pas confondre distribution = disposition spatiale (des végétaux) en un lieu donné et répartition = disposition géographique d’un taxon sur toute son aire (Da Lage & Métaillé, 2000, p.171 et 456).
\(^3\) Réunion de Libreville « La gestion des forêts denses africaines aujourd’hui », du 12 au 16 octobre 1998 - projet FORAFRI - conjointement exécuté par le CIRAD et le CIFOR. (Nasi et al., 1999).
\(^4\) Réseau d’informatisation des herbiers africains.
\(^5\) Institut de recherche pour le développement (France)
limites des grandes formations végétales. Le projet PROTA (*Plant Resources of Tropical Africa*) se contente de distinguer les pays où la plante a été signalée (fig. 1a) :

- les cartes par points ou aires d’occupation ([UICN, 2001](http://www.prota.org/fr/prota/)), à partir des échantillons dûment localisés, séchés et conservés dans une structure *ad hoc*, en général un herbarium, et/ou des observations sur le terrain, elles aussi géoréférencées (fig. 1c, 1d).

Entre ces deux types de représentation, il existe de multiples variantes. À titre d’exemple, nous citerons la méthode utilisée par R. Letouzey dans ses « Documents phytogéographiques » (1978, 1979), dont la parution a été malheureusement trop tôt interrompue. Les données de présence reposent sur des observations de terrain au Cameroun, rapportées aux degrés carrés, eux-mêmes découverts en carrés de 10 minutes sexagésimales. Chaque carré, d’environ 18 km de côté, concerné par la présence d’une espèce, a été marqué en son centre par un point dont le diamètre varie en fonction de son abondance relative, estimée en trois classes d’abondance (fig. 1e). À partir de cette représentation, assortie d’observations personnelles, Vivien et Faure (1985) proposent des cartes mixtes indiquant « les zones où une espèce donnée existe avec certitude ». De ce fait, une telle carte (fig. 1f), matérialisant les contours des aires de répartition des espèces, est un compromis entre la méthode par généralisation et la méthode par points.

Figure 1 : a) Carte de répartition d’une espèce par pays (projet PROTA : [http://www.prota.org/fr/prota/](http://www.prota.org/fr/prota/)) ; b) Aire générale des Sapotaceae (Aubréville, 1964) ; c) Distribution de Bikinia (Wieringa, 1999) ; d) Distribution de Bikinia le-testui (Pellegr.) Wieringa subsp. le-testui (cercle) et subsp. mayumbensis Wieringa (carré) (Wieringa, 1999) ; e) Carte
3 Bases méthodologiques

L’objectif consiste à réaliser des cartes de répartition à différentes échelles, d’espèces végétales d’Afrique tropicale humide exploitées pour leur bois-matière première. Les outils géomatiques doivent aider à construire des cartes adaptées aux besoins des utilisateurs. Ils doivent aussi permettre de comparer la répartition des espèces et de croiser ces informations avec des couches thématiques (sols, climats, exploitation, aires protégées…) dans le but d’identifier les paramètres explicatifs potentiels de répartition et de pression sur ces espèces.

Ces cartes de répartition peuvent être construites à partir de données issues des herbiers, des relevés floristiques de différentes origines, des inventaires forestiers eux-mêmes réalisés selon des protocoles multiples et d’autres sources éventuelles. Si les premières données sont relativement simples à obtenir, il n’en est pas de même des suivantes. Les relevés floristiques dus à des botanistes-écologistes mais aussi à des chercheurs de disciplines voisines, sont, pour la majorité, rencontrés dans des thèses et rapports rarement publiés et, de ce fait, difficiles à retrouver. Les inventaires forestiers sont nombreux et peu accessibles car issus de la littérature grise (rapports d’expertise, rapports techniques, documents scientifiques).

Les espèces retenues dans un premier temps sont des arbres exploités pour leur bois, d’après une liste établie par l’ATIBT (1986). Cette liste comprend des « noms pilotes » (ou noms commerciaux), proposés à l’ensemble de la communauté des producteurs et utilisateurs de bois, assortis de leurs équivalents botaniques, parfois approximatifs.

3.1 Le matériel d’étude : les arbres commercialisés d’Afrique tropicale humide

Les espèces commercialisées (ou « essences forestières ») sont de grands arbres exploités pour leur bois, généralement abondants et relativement bien identifiables sur le terrain, tant par les forestiers que par les botanistes. Les échantillons de ces espèces arborées ne sont pas souvent représentés dans les herbaries à cause des difficultés de collecte des fleurs et des fruits, dues à la hauteur des arbres. Elles sont aussi rarement collectées car, étant communes, elles peuvent donner l’impression d’être connues et identifiables à vue, ce qui est loin d’être toujours le cas (Détienne, 1979). On pourrait presque dire que, plus une plante est de grande dimension et abondante, moins elle est représentée dans les collections et moins sa biologie et son comportement sont connus.

Par contre, les espèces commercialisées ont fait et continuent de faire l’objet d’inventaires de la part des utilisateurs du bois, destinés à estimer l’importance des ressources : organismes techniques ou scientifiques internationaux et nationaux (FAO et CIRAD en particulier), gestionnaires nationaux et exploitants. Ces inventaires forestiers identifient les espèces botaniques mais ce n’est pas toujours le cas, en particulier dans des groupes d’espèces difficiles à déterminer sur le terrain tels que la sous-famille des Leguminosae-Caesalpinioideae. Ce sont alors des essences forestières qui sont inventoriées incluant, sous une appellation commerciale commune, plusieurs espèces voire plusieurs genres botaniques.

3.2 L’espace considéré

La région prise en compte est le domaine forestier tropical humide, caractérisé par la présence de forêts denses humides sempervirentes et semi-décidues, de savanes incluses et péricées, et de formations associées. Cet ensemble couvre le « Domaine de la forêt dense de basse et moyenne altitudes – Centre régional d’endémisme guinéo-congolais » et le « Domaine des savanes diversement exploitées ». 

6 Association technique internationale des bois tropicaux
7 La préoccupation essentielle des forestiers et industriels du bois étant la caractéristique du matériau bois, et non son identité botanique, il est logique qu’ils ne s’en soucient que marginalement.
8 C’est ainsi que la séparation des sexes chez l’okoumé ne fut mise en évidence que bien des années après la découverte de cet arbre, pourtant d’une grande importance économique (Grison, 1976 et 1978).
9 Food and Agriculture Organization of the United Nations
10 Centre de coopération internationale en recherche agronomique pour le développement (France)

3.4 La représentation cartographique

Les cartes de répartition des essences forestières et des espèces botaniques sont réalisées à partir d’un support géographique constitué par des couches SIG : le trait de côte, les frontières des États, le relief (à partir d’un modèle numérique de terrain), le réseau hydrographique, les principales localités, les zones de végétation. Nous y rajoutons les stations de collectes et celles des relevés floristiques et des inventaires. Il s’agit donc de réunir, en les distinguant précisément, les lieux de récolte des espèces, ceux des relevés et des inventaires. Ces distinctions sont matérialisées par des symboles et des couleurs différents (tableau 1).

<table>
<thead>
<tr>
<th>Noms pilotes</th>
<th>Noms scientifiques</th>
<th>Inventaires forestiers</th>
<th>Herbiers</th>
<th>Relevés floristiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>moabi</td>
<td>Baillonella toxasperma</td>
<td>□</td>
<td>■</td>
<td>○</td>
</tr>
<tr>
<td>emien</td>
<td>Alstonia boonei</td>
<td>◊</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td></td>
<td>Alstonia congensis</td>
<td>□</td>
<td>▼</td>
<td>▼</td>
</tr>
</tbody>
</table>

Tableau 1 : Représentation symbolique des différentes sources de données pour deux essences, correspondant à une (moabi) ou deux (emien) espèces botaniques.

4 Origines des données

Quatre sources principales de données ont été identifiées et retenues : les herbiers, les inventaires forestiers, les relevés floristiques, les publications taxonomiques spécialisées ; en outre, il peut être nécessaire d’obtenir des informations supplémentaires à partir des carnets de collecte, des cartes publiées, des collections d’objets (fruits et bois par exemple). Des échantillons de feuilles ou d’écorces, collectés aux fins d’études génétiques, permettent actuellement de constituer des collections susceptibles de compléter ces sources de données.

4.1 Herbiers

Ces collections de plantes séchées, destinées aux études botaniques, renferment les échantillons de référence ayant servi à la description des nouvelles espèces. Elles représentent un potentiel d’information de première valeur. Outre la référence à l’objet, sur lequel on peut toujours revenir, les étiquettes annexées fournissent des informations variées sur la phénologie, l’écologie, l’habitat etc. Ces informations varient notablement en fonction des époques et des collecteurs. En contrepartie, les grands arbres sont mal représentés pour plusieurs raisons déjà évoquées ci-dessus. Les herbiers à consulter sont les herbiers nationaux africains et les grands herbiers européens, les uns et les autres étant plus ou moins en voie de numérisation.

4.2 Inventaires forestiers

Les inventaires forestiers constituent une source considérable d’information : outre la présence de l’espèce, ils contiennent des données sur l’abondance – nombre d’individus – et la structure diamétrique

11 L’essence forestière connue des exploitants sous le nom acuminata, qui désigne une variété d’Entandrophragma (A. congoense) est représentée uniquement à Paris par trois planches d’une même récolte.
des populations, éléments qui permettent d’évaluer la ressource disponible et sa dynamique. Ces inventaires varient en fonction de leurs objectifs, des essences prises en compte, des méthodes et de leur ancienneté.

4.3 Relevés floristiques


4.4 Flores, monographies, révisions

Indispensables pour la constitution du référentiel taxonomique, ces travaux sont d’autant plus précieux qu’ils citent le matériel étudié, les localités et l’état phénologique. Ces travaux botaniques sont en général agrémentés de cartes de répartition des espèces, basées sur du matériel d’herbier examiné par l’auteur.

4.5 Autres sources potentielles

Diverses autres sources sont susceptibles d’être utilisables : anciennes cartes, carnets de terrain, xylotèques, carpothèques, fonds documentaires du Laboratoire de Phanérogamie du MNHN, du CIRAD ou d’autres instituts de recherche (Belgique, Grande-Bretagne, Pays-Bas…). 

4.6 Valeur des données en fonction de leur origine

Les informations essentielles pour la réalisation de cartes de répartition sont l’identification précise des plantes et leur exacte localisation. L’identité botanique n’est, nous l’avons déjà dit, rigoureusement exacte que pour les spécimens d’herbier. Toutefois, si le lieu de collecte est indiqué, il reste souvent très approximatif – l’usage du GPS ne s’étant généralisé que très récemment13 – et il n’est pas toujours aisé de retrouver une localité ancienne, qui a pu disparaître, changer de nom ou simplement de lieu. En fait, à l’exception des collectes les plus récentes avec longitude et latitude relevées sur le terrain, les coordonnées géographiques restent relativement imprecises. Les autres informations ne sont mentionnées qu’à titre indicatif et peuvent être utilisées pour des développements ultérieurs plus que pour la seule répartition des espèces.

Concernant la localisation des inventaires forestiers anciens, dans certains cas les unités primaires d’inventaire peuvent être assez précisément localisées, car elles ont généralement été reportées sur des cartes (souvent au 1:200 000). Dans d’autres cas, les données primaires ont été perdues et les résultats ne sont connus que de manière synthétique, sur des surfaces de plusieurs dizaines de milliers d’hectares ; l’information est alors située sur le centre de gravité de l’aire inventoriée.

5 Organisation des données

5.1 Informatisation des données d’herbiers et des relevés floristiques

Les données fournies par les étiquettes d’herbier, les carnets de terrain, les relevés floristiques et la bibliographie ont été informatisées à travers le modèle de bases de données RIHA (Chevillotte &


13 Le GPS de précision, d’abord à usage militaire, fut mis à la disposition des civils à la fin des années 80.
Florence, 2006). Ces données sont réparties dans plusieurs entités qui sont détaillées ci-dessous (fig. 2), en relation avec la localisation géographique. Celle-ci est organisée selon une structure hiérarchique, comprenant les noms utilisés pour désigner une même localité. En effet, très souvent, l’écriture varie en fonction de la langue du collecteur, des changements au cours des temps, des doublons, etc.

L’information la plus précise est fournie par la station de récolte (coordonnées GPS) rattachée à une localité qui dépend d’une division administrative (département, province, région ou état) et d’une carte de référence. L’entité « localité » contient une liste ou « gazetier » des noms de lieux ou de localités du pays concerné par la gestion informatisée de sa flore. Les différents degrés de précision apportés par les coordonnées géographiques permettent de coupler les données du modèle avec un Système d’information géographique et de produire les cartes de répartition par espèce.

**Figure 2 : Échelle des informations rattachées à la localisation géographique.**

### 5.2 Informatisation des données d’inventaires forestiers

Les cartes figurant les inventaires ont été scannées et calées avec le logiciel MapInfo. Chaque unité primaire (i.e. la parcelle d’inventaire la plus petite) a été saisie manuellement en mode point. Les limites d’inventaires ont été saisies sur un fond cartographique issu du *Digital Chart of the World* (DCW).

L’ensemble des données d’inventaires forestiers a été intégré directement dans MapInfo et ArcGis (fig. 3). Trois types de représentation ont été retenus :

- en mode point (présence des espèces),
- en symboles proportionnels à l’abondance des espèces sur chaque unité primaire,
- en carte d’abondance obtenue par la méthode d’interpolation IDW (*Inverse Distance Weighted*)

Les cartes relatives à l’abondance des espèces ne sont réalisées que lorsque des inventaires sont disponibles sur de grandes surfaces et avec la même méthode. C’est, par exemple, le cas de toutes les forêts du Sud-Cameroun, où les cartes d’abondance sont réalisées directement à partir des SIG. La
technique d’interpolation IDW a été utilisée pour générer des cartes d’abondance « lissées » à partir de l’interpolation des abondances/ha pour chacune des espèces pour lesquelles l’information était disponible. Elle repose sur l’hypothèse que la surface d’interpolation est influencée par les points dont les plus proches ont plus de poids que les plus éloignés. La surface d’interpolation est une moyenne pondérée des points de dispersion dont le poids attribué à chacun diminue à mesure que la distance du point d’interpolation au point de dispersion augmente.

5.3 Réalisation du WebSIG « phyto-afri »

La figure 3 synthétise la réalisation technique qui a conduit à l’élaboration du WebSIG « phyto-afri » (http://phyto-afri.ird.fr). Les données d’herbiers, relevés floristiques et bibliographie sont saisies dans la base RIHA sous MS Access, puis intégrées avec les inventaires forestiers dans un SIG via MapInfo ou ArcGis. Les attributs des données primaires et les couches SIG sont transférés dans la base de données MySQL du serveur cartographique DYNMAP, moteur de l’application, qui permet à l’internaute de consulter le site via un navigateur et Flash Player.

6 La validation des données

6.1 Définition botanique des essences

Une fois définie la liste des essences forestières et de leurs noms pilotes il s’agit de les identifier très précisément par leurs noms scientifiques, en suivant les règles utilisées en nomenclature botanique.

6.2 De l’essence à l’espèce botanique

L’« essence forestière » fait référence à une qualité de bois particulière ; c’est l’arbre des professionnels du bois, du gestionnaire à l’utilisateur. Elle est désignée par un nom pilote ou appellation
commerciale, retenu parmi les très nombreux noms vernaculaires utilisés en Afrique. Dans le meilleur des cas, le nom pilote correspond à une espèce botanique précise mais il arrive qu’il en recouvre plusieurs présentant des caractéristiques techniques semblables. Il se peut aussi qu’une essence forestière soit connue sous plusieurs noms, ainsi *Triplochiton scleroxylon* est appelé « samba » en Afrique de l’Ouest, « ayous » ou « obéché » en Afrique centrale. Les noms d’essences varient aussi d’une langue officielle à l’autre (anglais, français, portugais, etc.).

La liste des essences forestières de l’ATIBT (1986) comporte 83 noms pilotes correspondant à 111 espèces botaniques et 9 groupes d’espèces. Après élimination des essences n’appartenant pas à l’espace défini et consultation de l’ATIBT, 13 autres essences sans intérêt commercial ont été supprimées ; une seule essence à été rajoutée à la liste. Il reste donc 73 noms pilotes correspondant à 119 noms botaniques.

Plusieurs cas peuvent se présenter :
- 1 essence correspond à 1 taxon (44 cas) ;
- 1 essence recouvre 2 taxons (17 cas) ;
- 1 essence réunit plusieurs taxons du même genre (3 taxons 10 cas, 4 - 1 cas, 5 - 2 cas) ;
- 5 essences recouvrent une espèce et ses taxons infra-spécifiques (sous-espèces et variétés).

Généralement les qualités techniques de ces taxons sont identiques et ne peuvent pas être distinguées en tant que bois. Cependant, au Gabon, les forestiers reconnaissent sur des caractéristiques techniques une variété *acuminata* d’*Entandrophragma angolense*.

6.3 Établissement des correspondances précises entre essences et espèces

Lorsque plusieurs espèces d’un même genre sont désignées sous un unique nom pilote qui correspondrait à une seule essence, il est nécessaire de définir exactement celles qui sont présentes dans la zone considérée par l’inventaire et celles qui sont effectivement exploitées. C’est ainsi qu’au nom pilote « doussié » correspondent 5 espèces d’un même genre (*Afzelia*) dont deux seulement sont de grands arbres de forêt dense humide exploités sous le nom de « doussié rouge » et « doussié blanc » (Aubréville, 1968). Cependant une autre espèce aurait été exploitée en Côte d’Ivoire, peut-être l’est-elle encore (Détienne, com. pers.). Toutes ces incertitudes doivent être levées dans la mesure du possible.

6.4 Identités botaniques : l’indispensable « référentiel taxonomique »

À partir de la liste des essences forestières, il est nécessaire d’établir le « référentiel taxonomique », c’est à dire la liste des noms scientifiques et de leurs synonymes précisant, pour chacun d’entre eux, la publication de référence, le type et ses différentes formes, le basionyme (nom sous lequel fut décrite l’espèce) et leurs lieux de dépôt respectifs. La bibliographie doit être vérifiée et citée. On s’apercevra, dans bien des cas, des erreurs qui ont pu être commises au cours de la vie, souvent mouvementée, des noms de plantes : depuis de simples erreurs d’orthographe jusqu’à des créations de

14 Ces noms ont été proposés, en grande partie par Aubréville dans son ouvrage sur les arbres de forêt dense de la Côte d’Ivoire (1959), d’après les informations de son prospecteur, le garde forestier Aké Angué, père du botaniste ivoirien, Laurent Aké Assi, qui l’accompagnait dès ses premières excursions en 1930.
15 Nous remercions ici Monsieur J.-J. Landrot, ancien Président de l’ATIBT, pour son appui et les informations qu’il nous a aimablement communiquées.
16 Nous n’avons tenu compte que des noms d’espèces à l’exclusion des appellations intraspécifiques (sous-espèces, variétés).
18 Holotype : spécimen de référence, syntype : l’un quelconque des spécimens définissant, avant 1952, une espèce ; isotype : double de l’holotype dans la même récolte.
nombreux noms désignant une même espèce. Cette liste est complétée par les équivalences entre noms pilotes et noms scientifiques, base indispensable aux étapes ultérieures du travail.

6.5 Coordonnées géographiques des stations de collecte

La précision des données de localisation est fonction des moyens technologiques et des cartes disponibles à une époque donnée. Les difficultés d’établir les coordonnées géographiques augmentent généralement avec l’ancienneté des collectes ou des relevés. Le plus souvent, le lieu de récolte est vague : un village, un lieu-dit, un cours d’eau, une distance estimée ou une direction approximative. La localité mais aussi les lieux d’activités humaines (scieries ou chantiers forestiers, plantations, écoles, routes,...) peuvent avoir disparu, changé de place ou de nom. Il est alors inutile, voire dangereux, de donner des coordonnées géographiques précises.

L’apparition d’outils en ligne tels que des gazetiers, par exemple Fallingrain (http://www.fallingrain.com/world/) ou Google Earth (earth.google.com/intl/fr/), peuvent faciliter le travail de repérage mais ne sont pas toujours suffisants pour retrouver une localité précise. Certaines données doivent ainsi être abandonnées.

Les inventaires forestiers ne sont pas concernés par ces recommandations dans la mesure où la localisation des blocs est définie dans le plan d’échantillonnage. Toutefois, dans certains inventaires, les résultats part units primaires ont été généralisés par grands blocs d’inventaires (plusieurs milliers d’hectares). Dans ce cas, la référence géographique peut être le bloc dans son ensemble (une surface) ou le centroïde de ce bloc.

7 Résultats : application au Cameroun

Les premières collectes au Cameroun ont débuté au début de la seconde moitié du XIXᵉ siècle avec G. Mann, A. Staudt et G.A. Zenker, qui se référaient à très peu de localités (Lolodorf, Bipinde…). G.W.J. Mildbraed, en 1914, apporta un peu plus de précision dans ses localisations en mentionnant le nombre de kilomètres par rapport à un village ou à une ville et l’orientation. Il faudra attendre 1946, avec R. Letouzey, pour avoir une description précise de la station de collecte susceptible d’être géoréferencée à partir des cartes IGN au 1 : 200 000, 1 : 100 000 voire 1 : 50 000 (Letouzey, 1968). À partir des années 60, des botanistes tels que J.J. Bos, A.J.M. Leeuwenberg ou J.J.F.E. de Wilde complètent leurs stations de collecte avec des coordonnées géographiques. Cette pratique s’est généralisée depuis la fin des années 80.

7.1 Les espèces commercialisables au Cameroun


La figure 4 montre la distribution de l’espèce *Baillonella toxisperma*, réalisée à partir des données de différentes sources : les herbiers de Paris, Kew et Yaoundé, les inventaires forestiers du CIRAD (ex-CTFT) et des relevés floristiques de R. Letouzey.

---

19 Ces observations donnent lieu à des mises au point taxonomiques et nomenclaturales publiées dans la littérature spécialisée (Mouly et al., 2010).

20 Centre technique forestier tropical
7.2 Les herbiers

Tout d’abord spécialisé en matière forestière, l’Herbier national du Cameroun s’élargit ensuite aux Ptéridophytes (fougères et plantes alliées) et Phanérogames (toutes les plantes à fleurs). L’essentiel du matériel est aussi représenté en France (Paris), aux Pays-Bas (Wageningen) et en Grande-Bretagne (Kew). Depuis quelques années, les collections de l’Herbier sont enrichies à partir des inventaires botaniques réalisés dans le cadre de programmes scientifiques (Mont Cameroun, IFORA\textsuperscript{21}) ou d’études d’impact.

7.3 Inventaires forestiers

Les inventaires réalisés par le CIRAD au Cameroun entre 1964 et 1985, valorisés dans le cadre de ce projet, concernent plus de 9 000 000 d’hectares. Ces inventaires ont été réalisés avec un taux de sondage variant de 0,05 à 1,12 % (en fonction de la taille des unités primaires effectivement mesurées et de leur espacement). Il peut s’agir, soit d’inventaires systématiques – sur l’ensemble de la surface considérée –, par layonnage tous les 500 m à 2 km\textsuperscript{22}, soit d’inventaires à dispositif de sondage emboîté

\textsuperscript{21} Projet « Îles forestières africaines » de biogéographie et phylogéographie
\textsuperscript{22} ou sondage à un degré
où les unités primaires sont disposées selon un maillage aléatoire ou systématique\textsuperscript{23} ; au sein de ces unités primaires, de taille variant de 1 à 5 km, un inventaire systématique est réalisé.

Ainsi, à titre d’exemple, le plan de sondage de l’inventaire du Sud-Cameroun (1984), réalisé sur 6 millions d’hectares, était le suivant :

- les unités primaires étaient disposées selon un maillage de 20 x 20 km,
- chaque unité primaire mesurait 2 x 2 km,
- au sein de ces unités primaires, un inventaire systématique était réalisé le long de layons de 25 m de large espacés de 500 m ; le taux de sondage des unités primaires était égal à 5 %,
- sur ces layons, tous les arbres des espèces principales (espèces les plus exploitées) étaient comptabilisés à partir d’un diamètre minimum d’inventaire de 20 cm (diamètre du tronc).

Dans ces divers inventaires, tous les individus dont le diamètre du tronc est supérieur ou égal à un diamètre minimum défini sont comptabilisés et mesurés (fig. 5) ; ce diamètre peut être variable à la fois selon l’inventaire et les catégories d’essences forestières inventoriées (essences très exploitées, peu exploitées, de promotion) : 20, 40 ou 60 cm constituent des limites d’inventaires couramment utilisées.

En complément de ces données, des inventaires réalisée par la FAO en 2003 concernent tous les arbres à partir de 10 cm de diamètre ; ils recouvrent l’ensemble du territoire, bien qu’avec un taux de sondage beaucoup plus faible. Enfin, des inventaires plus précis ont été exécutés récemment par les exploitants forestiers dans le cadre des aménagements forestiers rendus obligatoires par la législation camerounaise. Ces données sont encore difficilement disponibles et n’ont pas pu être prises en compte dans le présent travail.

La figure 6 exprime la variation de la densité des effectifs de \textit{Baillonella toxisperma} (Sapotaceae) au Sud-Cameroun au milieu des années 80, en symboles proportionnels aux effectifs

La figure 6 exprime la variation de la densité des effectifs de \textit{Baillonella toxisperma} obtenue à partir des données de distribution des individus de la figure 5, suivant la méthode d’interpolation IDW (\textit{Inverse Distance Weighted}).

\textsuperscript{23} ou sondage à deux degrés
Figure 6 : Carte d'abondance de Baillonella toxisperma (Sapotaceae) au Sud-Cameroun au milieu des années 80, obtenue à partir de la méthode d'interpolation IDW

7.4 Relevés floristiques

Les nombreux relevés floristiques réalisés par Letouzey dans le cadre de son étude phytogéographique du Cameroun publiée en 1968, fournissent des données validées sur le plan botanique et localisées avec précision à partir des cartes IGN au 1 : 200 000 des années 60. Des thèses et mémoires ont été également mis à profit.

8 Conclusion

Le croisement des données d’échantillons d’herbiers et d’inventaires forestiers est une originalité de notre démarche et permet de répondre à des besoins de plusieurs types d’utilisateurs. Les données issues des collections d’échantillons d’herbiers sont essentielles en tant que références car, seuls, ces échantillons permettent de s’assurer de la détermination des espèces. Ces données sont toutefois insuffisantes dans l’étude précise des aires de répartition des espèces.

Pour de nombreuses espèces d’arbres, seuls les inventaires forestiers, réalisés de manière systématique sur de très grandes superficies fournissent les données suffisantes. Toutefois, l’identification scientifique des essences forestières pratiquée dans les inventaires n’en garantit pas toujours l’exactitude absolue. L’absence d’échantillons d’herbier associés à ces inventaires ne permet pas de revenir sur une identification pour la contrôler ultérieurement ou la modifier. Actuellement, les prospecteurs forestiers sont petit à petit formés à la botanique et les erreurs d’identification tendent à diminuer, en particulier pour les espèces les mieux connues mais aussi dans les concessions forestières gérées par des sociétés internationales qui investissent un peu plus dans la formation de leur personnel.

Le problème du géoréférencement constitue l’un des plus importants auquel nous ayons été confrontés. Pour une majorité d’inventaires, il a pu être résolu assez facilement car les placettes d’inventaires étaient positionnées sur des cartes permettant d’extraire les coordonnées géographiques avec une certaine précision. D’un autre côté, plus on s’adresse à des échantillons botanique anciens, plus difficile est la localisation ; certains étant inexploitables du fait de localisations trop imprécises. Même
dans le cas où un nom de localité est cité, il est parfois impossible de retrouver le lieu précis, ce qui nous a conduits à abandonner certaines données.

En conséquence, l’outil que nous avons mis en place (http://phyto-afri.ird.fr) permet de réaliser à la fois des cartes de distribution et de répartition à diverses échelles (toute l’Afrique forestière, un pays, une région), avec la possibilité de combiner diverses couches thématiques telles que les grands types de végétation (fig. 4). Il est possible de réaliser des cartes d’abondances, qui constituent un résultat original de valorisation d’anciens inventaires forestiers (fig. 6). Tout cela permet d’adapter le produit cartographique au besoin de l’utilisateur.


Bibliographie


ATIBT, 2003, Congo, La lettre de l’ATIBT, 18, p. 41.


Guillaumet J.-L., Chevillotte H., Valton C., 2009, Les forêts tropicales humides africaines, échelle 1 : 6 000 000, format 115x75 cm, IRD, Marseille, France.


Pellegrin F., 1940, Les Méliacées d’Afrique occidentale, Notulae systematiceae, IX (1).


Phyto-afri : un WebSIG sur les essences forestières commercialisées de l’Afrique tropicale humide

par Hervé Chevillotte
IRD, s/c MNHN, Herbier national, 16 rue Buffon, F-75005 Paris, France
herve.chevillotte@ird.fr

Nicolas Fauvet
CIRAD, Campus international de Baillarguet TA-C105/D, F-34398 Montpellier cedex 5, France
nicolas.fauvet@cirad.fr

Catherine Valton
IRD France-Nord, 32 avenue Henri Varagnat, F-93143 Bondy cedex, France
catherine.valton@ird.fr

Résumé

Cette application se présente comme un outil d’analyse de la distribution spatiale des espèces forestières commercialisées en Afrique tropicale humide, afin d’améliorer la mise en place de stratégies de conservation et d’exploitation durable de ces ressources, en particulier dans le cadre de l’Union internationale pour la conservation de la nature (UICN) et de la Convention sur le commerce international des espèces de faune et de flore sauvages menacées d’extinction (CITES).

Ce WebSIG comporte deux niveaux de découverte des données botaniques (échantillons d’herbier, inventaires forestiers, relevés floristiques) dont l’un est plus particulièrement destiné aux forestiers, décideurs, étudiants, amateurs, et l’autre aux spécialistes tels que les phytogéographes et les botanistes.

1 Le contexte
(PFBC), regroupement de gouvernements, d’agences internationales, d’ONG et associations professionnelles visant à une gestion concertée et durable des ressources forestières de la région.

Le projet de rassembler et d’utiliser les données très diverses existant sur les arbres tropicaux africains répond à une recommandation formulée lors du séminaire relatif à "La gestion des forêts denses africaines aujourd'hui", organisé par le projet FORAFRI (Appui à la recherche forestière et au transfert des connaissances scientifiques) à Libreville, au Gabon, du 12 au 16 octobre 1998 (Nasi et al., 1999).

1.1 Les initiatives et les projets

Dans un premier temps, avec l’appui du Fonds Francophone des Inforoutes, le réseau d’informatication des herbiers africains (RIHA) a été mis en œuvre au début des années 2000, afin de numériser les échantillons ou récoltes de plantes gérées par les principaux Herbiers d’Afrique francophone. Depuis 2008, l’application WebSIG « phyto-afri » permet de rassembler et d’exploiter une partie de ces données correspondant à 119 noms botaniques regroupées dans 83 noms pilotes ou noms commerciaux (ATIBT, 1986), ainsi que les autres types de données primaires telles que les relevés floristiques et les inventaires forestiers (Guillaumet et al., 2010). Le financement a été pris en charge par le ministère des Affaires étrangères dans le cadre du projet « Sud-Expert-Plantes » coordonné par l’Institut de recherche pour le développement (IRD).

2 Les objectifs

Les objectifs fixés par l’application « phyto-afri » permettent de répondre aux besoins d’informations scientifiques et techniques des chercheurs, des gestionnaires de la forêt et des décideurs tels que :

- Consulter les données primaires
- Visualiser la distribution des échantillons d’herbier, des relevés floristiques et des inventaires forestiers
- Accéder à des données complémentaires
- Proposer des outils d’analyse et de recherche scientifique
- Mesurer des surfaces et des distances
- Réaliser des cartes à la demande et les imprimer.

3 La réalisation technique

Les données d’herbiers, relevés floristiques et bibliographie sont saisies dans la base RIHA sous ACCESS, puis intégrées avec les inventaires forestiers dans un SIG via MapInfo ou ArcGis. Les attributs des données primaires et les couches SIG sont transférés dans la base de données MySQL du serveur cartographique DYNMAP, moteur de l’application, qui permet à l’internaute de consulter le site via un navigateur et Flash player.

4 Les fonctionnalités

L’application s’ouvre sur une carte de l’Afrique forestière tropicale humide (fig. 1) qui s’étend de 15° au nord et au sud de part et d’autre de l’équateur (White, 1986 ; Guillaumet et al., 2009). Cette carte montre la présence/absence des données primaires numérisées à ce jour selon une représentation par maille (1 maille = 100 km²).

---

4.1 La visualisation des distributions

Elle s’effectue selon trois types de recherche :

- la recherche par pays

La sélection du pays s’effectue par liste déroulante, avec par exemple le Cameroun (fig. 2). Cette recherche affiche le pays sélectionné avec la distribution des données primaires selon une représentation par maille (1 maille = 30 km$^2$).

- la recherche par nom scientifique

Il suffit de taper une ou plusieurs lettres dans le champ de saisie pour voir apparaître une liste de noms scientifiques. La sélection d’un nom scientifique affiche le résultat de l’espèce sélectionnée sur la carte (fig. 3a).

- la recherche par nom pilote

Elle s’effectue de la même façon que pour le nom scientifique. La figure 3b montre la distribution du nom pilote ozigo correspondant au nom scientifique *Dacryodes buettneri*, associée à une couche thématique comme le domaine floristique extrait des cartes de R. Letouzey réalisées dans les années 70 (Letouzey, 1978 ; 1979).
4.2 L’accès aux données primaires et aux documents associés

Chaque point sur la carte représente la localisation d’une ou plusieurs espèces. Les points rouges correspondent aux récoltes, les oranges aux relevés floristiques, les jaunes aux inventaires forestiers. La sélection d’un point permet d’accéder directement à une fiche d’informations ou à une liste d’espèces recensées sur cette zone géographique. A partir de cette liste, la sélection d’une espèce affiche également une fiche d’informations sur les données primaires (fig. 4).

Par ailleurs, un ensemble de documents sont associés aux noms scientifiques ou taxons que l’on peut consulter directement à partir de l’onglet « documents associés » ou à partir des différentes fiches (fig. 5). On citera les documents suivants :

- une fiche biologique qui décrit le type biologique, la reproduction, la croissance, la répartition, les usages,
- le scan du spécimen ou de l’échantillon pour les données sur les récoltes,
- la bibliographie du taxon,
- les photos in situ,
- la carte d’abondance pour les inventaires forestiers.
4.3 Les données complémentaires

L’application « phyto-afri » donne accès à quelques données complémentaires réunies dans différentes rubriques telles que :

- le glossaire qui fournit la définition des termes employés dans l’application,
- la liste rouge qui nous renseigne sur le statut de conservation des arbres tropicaux, établi par l’Union international de la conservation de la nature (UICN),
- le référentiel taxonomique qui donne les informations d’ordre taxinomique et nomenclaturale sur les noms scientifiques avec un lien vers le site du Conservatoire et jardin botaniques de la ville de Genève, qui constitue la principale référence pour l’Afrique (Lebrun et Stork, 1991-2010).

4.4 Les cartes d’analyses

Le WebSIG offre la possibilité aux chercheurs d’effectuer des cartes d’analyses à partir des données de récoltes ou d’échantillons qui sont considérées comme étant les plus fiables sur le plan taxinomique. Les échantillons d’herbier font l’objet d’une détermination rigoureuse de la part des botanistes et sont parfois examinés par les spécialistes lorsqu’une famille au sens botanique est en cours de révision.

Les analyses proposées vont permettre d’étudier les relations phytogéographiques entre les espèces, de valider l’origine géographique et de contribuer à améliorer le statut de conservation et la connaissance des bois tropicaux (Détienné, 1979), sous deux approches :

- Etudier la distribution des taxons ayant le même nom pilote, par exemple le longhi (fig. 6) qui regroupe 5 noms scientifiques : *Chrysophyllum africanum*, *C. subnudum*, *C. beguei*, *C. lacourtianum*, *C. gorungosanum*.

  ![Figure 6](image6.png)

  *Figure 6 : distribution des Chrysophyllum regroupés sous le nom pilote « longhi. »*

- Etudier la distribution au choix de 1 à 5 taxons (fig. 7) sélectionnés à partir d’une liste.
5 Conclusions

Le WebSig « phyto-afri » offre plusieurs possibilités de recherche d'informations sur les arbres d'Afrique tropicale humide soumis à l'exploitation commerciale, à l'intention des gestionnaires et des décideurs mais aussi du grand public grâce à une aide de navigation en ligne. Le site propose également un volet spécifique ouvert à la recherche scientifique. Par ailleurs, une opération de transfert technologique du site est envisagée vers l’Observatoire des forêts d’Afrique centrale (OFAC), dont le but est de mutualiser les données disponibles pour le suivi des forêts sur les plans économique, écologique et social.

En résumé, ce WebSIG offre des possibilités d'études et d'évolution en fonction des thématiques et des enjeux actuels que sont l'inventaire et la conservation de la biodiversité, les impacts sur la structure et la diversité floristique des changements climatiques et l'exploitation durable des forêts.

6 Crédits

Conception scientifique et technique :

Hervé Chevillotte * ; Charles Doumenge ** ; Nicolas Fauvet ** ; Jean-Louis Guillaumet *** ; Catherine Valton *

Réalisation informatique :

(www.simalis.net) ; Hervé Chevillotte ; Catherine Valton

Les partenaires :

HNC : Herbier national du Cameroun
IEC : Herbier national du Congo
BANG : Herbier national de la République centrafricaine
SEP : Sud-Expert-Plantes (projet du MAE)

* IRD France-Nord (Institut de recherche pour le développement), 32 avenue Henri Varagnat, F-93143 Bondy cedex, France
** CIRAD (Centre international en recherche agronomique pour le développement), Campus international de Baillarguet TA-C105/D, F-34398 Montpellier cedex, France
*** MNHN (Muséum national d'histoire naturelle), 16 rue Buffon, F-75005 Paris, France

Bibliographie


Guillaumet J.-L., Chevillotte H. & Valton C., 2009, Carte des forêts tropicales humides africaines au 1 : 6 000 000. IRD, Bondy, France


